Models of binary outcomes with 3-level data: A comparison of some options within SAS

April 19, 2013

## Steve Gregorich

### Designs

### I. Cluster Randomized Trial

Cluster structure **20**/10/5

- . 20 level-3 units: clusters to be randomized
- . 10 level-2 units per level-3 unit (e.g., 200 people within clusters)
- . 5 level-1 units per level-2 unit (e.g., 5 assessments per person)
- . 1000 total level-1 units

Other cluster structure: **10**/20/5

Level-3 units (clusters) were the units of randomization, with equal allocation

```
Binary Y with ICC, \rho_y, ranging from = 0 to .7 by .1,
```

1000 replicate samples for each level of  $\rho_y$  (8 levels)

### An Aside: ICC in a 3-level sample

. Given a 3-level sample there are different ICC estimates

. Denote  $\sigma_{y,2}^2$  and  $\sigma_{y,3}^2$  as the variance components for random intercepts at levels 2 and 3, respectively, and  $\sigma_{\epsilon}^2$  as the residual variance.

Then the ICC at level-3 equals 
$$\frac{\sigma_{y.3}^2}{\sigma_{y.3}^2 + \sigma_{y.2}^2 + \sigma_{\varepsilon}^2}$$
(1)

And, the ICC at levels 2 and 3 equals 
$$\frac{\sigma_{y.3}^2 + \sigma_{y.2}^2}{\sigma_{y.3}^2 + \sigma_{y.2}^2 + \sigma_{\varepsilon}^2}$$
(2)

For this simulation,

.  $\rho_y$  represents the ICC at levels 2 and 3 (pooled), i.e., Eq. 2,

. 
$$\sigma_{y.2}^2 = \sigma_{y.3}^2$$
, and

. .5 $\rho_y$  represents the ICC at level 3, i.e., Eq. 1

## Designs

### **II. MultiCenter Randomized Trial**

Cluster structure **20**/10/5

- . 20 level-3 units: e.g., 'centers'
- . 10 level-2 units per level-3 unit (e.g., 200 people within 20 centers)
- . 5 level-1 units per level-2 unit (e.g., 5 assessments per person)
- . 1000 total level-1 units

Other cluster structures: 10/20/5, 4/50/5

Level-2 units (people) were the units of randomization. Within each level-3 unit, subordinate level-2 units were equally allocated to intervention groups

Binary Y with ICC at levels 2 + 3,  $\rho_y$ , ranging from = 0 to .7 by .1, and the ICC at level-3 equaled  $0.5\rho_y$ 

1000 replicate samples for each level of  $\rho_y$  (8 levels)

## Designs

### **III.** Observational Study with Stochastic X variables

### Cluster Structure **20**/10/5

- . 20 level-3 units
- . 10 level-2 units within each level-3 unit (i.e., 200 level-2 units)
- . 5 level-1 units within each level-2 unit (i.e., 1000 level-1 units)
- . 1000 total level-1 units

Other cluster structures: **10**/20/5, **4**/50/5

Binary Y with ICC at levels 2 + 3,  $\rho_y$ , ranging from 0 to .7 by .1, and the ICC at level-3 equal to  $0.5\rho_y$ 

Continuous level-1 and level-2 X variables, each with ICC values,  $\rho_x$ , ranging from 0 to .9, by .1

1000 replicate samples for each combination of  $\rho_y$  and  $\rho_x$  (80 combinations)

## Simulation Details for all 3 Designs

### General

- . *N*=1000; Cluster Structure: **20**/10/5, **10**/20/5, and **4**/50/5; *R*=1000
- $y \sim B(0.50)$

.  $\rho_y = 0$  to .7 by .1

### I. Cluster RCT and II. MultiCenter RCT

.  $Tx \sim B(0.50)$ 

. b = 0.3

. Note:  $\rho_{T_X} = 1$  for a Cluster RCT and  $\rho_{T_X} < 0$  for a MultiCenter RCT

### **III.** Observational Study with Stochastic X

$$b_{x1} = b_{x2} = 0.2$$

. 
$$\rho_{x1} = \rho_{x2} = \rho_x = 0$$
 to .9 by .1

### Simulation Details: Population Models

Generate normally distributed  $y^*$  with constant variance and exchangeable correlation structure for each appropriate combination of  $\rho_y$  and  $\rho_x$ 

I. Cluster RCT

$$y_{ijk}^* = Tx_i b + u_i + v_{ij} + e_{ijk}$$

### **II. MultiCenter RCT**

$$y_{ijk}^* = Tx_{ij}b + u_i + v_{ij} + e_{ijk},$$

### **III.** Observational study with Stochastic X

$$y_{ijk}^* = x \mathbf{1}_{ijk} b_1 + x \mathbf{2}_{ij} b_2 + u_i + v_{ij} + e_{ijk}$$

where 
$$u_i$$
,  $v_{ij}$ , and  $e_{ijk}$  are level-3, -2 and -1 residuals  
.  $e_{ijk} \sim \text{Logistic}(0, \pi^2/3)$   
.  $\text{VAR}(u_i) = \text{VAR}(v_{ij}) = \sigma^2$ , and  
.  $\sigma^2$  values chosen for specific  $\rho_y$  values  
If  $y_{ijk}^* > 0$  then  $y_{ijk} = 1$ ; else  $y_{ijk} = 0$ 

### Outcomes

### **Bias of standard error estimates**

- . Consider the mean standard error estimate across replicate samples, Se
- . Across replicate samples, the standard deviation of a parameter estimate,  $\sigma_{\rm b}$ , provides an unbiased estimate of its standard error.

. %bias = 
$$100 \times (\overline{se} - \sigma_b) / \sigma_b$$

### Bias of parameter estimates (not reported)

- . Unit-specific (mixed) population models were used for data generation
- . Many *population-average* models used for analysis (Naïve, GEE, ALR)
- . Uncertain of the corresponding *population-average* parameter values
- . However, parameter estimates from *unit-specific* models were unbiased, as were parameter estimates from *population-average* models when  $\rho_y = 0$

### **Relative power (not reported)**

- . Considered comparing relative power across modeling frameworks
- . However, when standard error estimates were reasonably unbiased—or were similarly biased—across 2 or more competitors, then relative power was also roughly equivalent.

## Modeling Frameworks

. Naïve (ignore cluster structure)

I.e., a plain logistic regression with model-based standard error estimates

. GEE logistic regression with fixed effects of level-3 clusters: model-based and empirical standard error estimates

. Alternating Logistic Regressions (ALR): model-based and empirical standard error estimates

. Mixed Logistic Model via Laplace method: model-based and empirical standard error estimates

# Modeling Frameworks: Naïve Logistic Regression

```
I. Cluster RCT / II. MultiCenter RCT

PROC GENMOD DATA= my_data ;

CLASS group_indicator ;

MODEL outcome = group_indicator / DIST=BIN ;

RUN ;
```

```
III. Observational Study with Stochastic Xs
```

```
PROC GENMOD DATA= my_data ;
```

```
MODEL outcome = x1 x^2 / DIST=BIN;
```

```
RUN;
```

# Modeling Frameworks: GEE Logistic w/ fixed effects @ level-3

### **General Idea**

Model the level-3 cluster indicator as a fixed effect and allow GEE to estimate exchangeable outcome response correlation within level-2 clusters

### I. Cluster RCT

. Note: fixed effects of level-3 clusters & group indicator are at the same level.

. Technically, this model can be fit for a cluster RCT design, but the results with model SEs would be identical to the Naïve model

. You can obtain empirical SEs, but to what end?

Modeling Frameworks: GEE Logistic w/ fixed effects @ level-3

### **II. MultiCenter RCT**

PROC GENMOD DATA= *my\_data* ;

CLASS level3\_ID level2\_ID group\_indicator;

MODEL *outcome* = *level3\_ID* group\_indicator / DIST=BIN ;

REPEATED SUBJECT = *level2\_ID*(*level3\_ID*) / TYPE=EXCH MODELSE;

RUN;

### **III.** Observational Study with Stochastic Xs

```
PROC GENMOD DATA= my_data ;
```

```
CLASS level3_ID level2_ID;
```

MODEL *outcome* = *x*<sup>1</sup> *x*<sup>2</sup> *level3\_ID* / DIST=BIN ;

REPEATED SUBJECT= *level2\_ID*(*level3\_ID*) / TYPE=EXCH MODELSE;

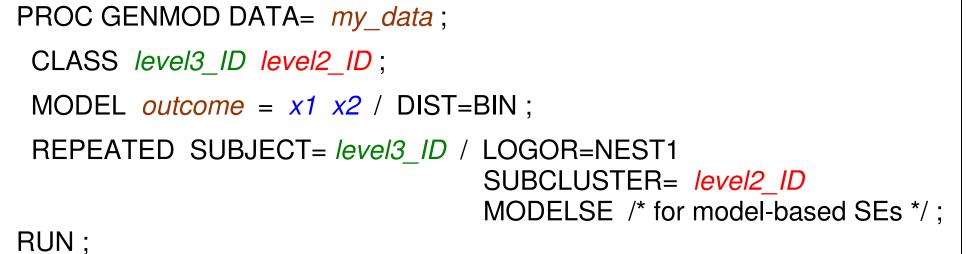
RUN;

# Modeling Frameworks: Alternating Logistic Regressions (ALR)

ALR is an alternative to GEE logistic regression.
 ALR represents intra-cluster associations via log odds ratios.
 I.e., pairwise log ORs of outcome response within the same cluster

. ALR allows for inferences about intra-cluster associations. Some authors consider ALR to be part of the GEE2 family

. ALR algorithm alternates between


a regular GEE1 step to update the model for the mean and a logistic regression step to update the log odds ratio model.

. SAS has a 3-level ALR option that estimates two log odds ratios: one for patients within the same level-3 cluster and another for patents within the same level-2 cluster

# Modeling Frameworks: Alternating Logistic Regressions

### I. Cluster RCT / II. MultiCenter RCT PROC GENMOD DATA= my\_data ; CLASS level3\_ID level2\_ID group\_indicator ; MODEL outcome = group\_indicator / DIST=BIN ; REPEATED SUBJECT= level3\_ID / LOGOR= NEST1 SUBCLUSTER= level2\_ID MODELSE /\* for model-based SEs \*/ ; RUN ;

### **III.** Observational Study with Stochastic Xs



With random intercepts at levels 2 and 3; via Laplace estimation

Random effects models can be fit by maximizing the marginal likelihood after integrating out the random effects

Usually numerical approximations are needed, e.g., Gaussian Quadrature

Laplace = Adaptive Gaussian quadrature with a single quadrature point

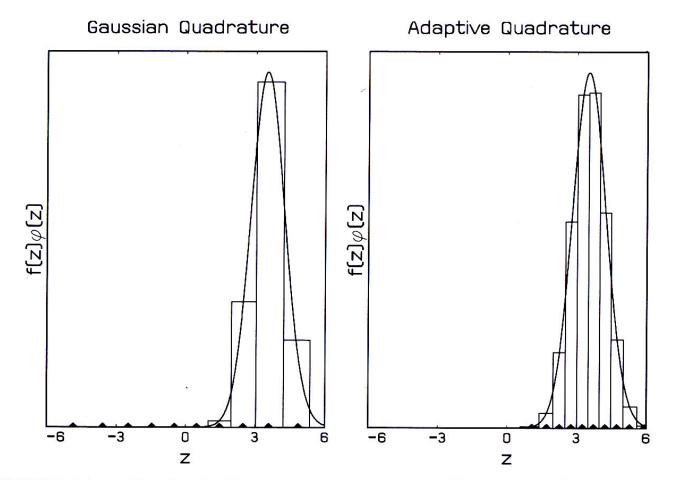



FIGURE 14.1. Graphical illustration of Gaussian (left window) and adaptive Gaussian (right window) quadrature of order Q = 10. The black triangles indicate the position of the quadrature points, and the rectangles indicate the contribution of each point to the integral.

Molenberghs & Verbeke (2005). Models for Discrete Longitudinal Data. Springer. (p. 274)

I. Cluster RCT / II. MultiCenter RCT

```
PROC GLIMMIX DATA= my_data

METHOD= LAPLACE

EMPIRICAL= CLASSICAL /* if you want empirical SEs */ ;

CLASS level3_ID level2_ID group_indicator;

MODEL outcome = group_indicator / DIST= BINARY S ;

RANDOM INTERCEPT / SUBJECT= level3_ID TYPE= CHOL ;

RANDOM INTERCEPT / SUBJECT= level2_ID(level3_ID) TYPE=CHOL ;

NLOPTIONS TECH= QUANEW ;

RUN ;
```

April 19, 2013

### **III.** Observational Study with Stochastic Xs

```
PROC GLIMMIX DATA= my_data

METHOD= LAPLACE

EMPIRICAL= CLASSICAL /* if you want empirical SEs */ ;

CLASS level3_ID level2_ID ;

MODEL outcome = x1 x2 / DIST=BINARY S ;

RANDOM INTERCEPT / SUBJECT= level3_ID TYPE= CHOL ;

RANDOM INTERCEPT / SUBJECT= level2_ID(level3_ID) TYPE=CHOL ;

NLOPTIONS TECH= QUANEW ;

RUN ;
```

## **Results Overview**

Summarize the bias of standard error estimates for each noted combination of design and cluster structure

|                                             | cluster structure |                 |                |  |
|---------------------------------------------|-------------------|-----------------|----------------|--|
| design                                      | <b>20</b> /10/5   | <b>10</b> /20/5 | <b>5</b> /40/5 |  |
| I. Cluster RCT                              | yes               | yes             | no             |  |
| II. MultiCenter RCT                         | yes               | yes             | yes            |  |
| III. Observational Study with Stochastic Xs | yes               | yes             | yes            |  |

# Results: I. Cluster RCT: 20/10/5

|         | Rank: ABS(SE %bias) |     |     | S    | SE bias % |     |      | ABS(SE bias)† |  |
|---------|---------------------|-----|-----|------|-----------|-----|------|---------------|--|
|         | mean                | min | max | mean | min       | max | ≥10% | ≥5%           |  |
| Naive   | 5.9                 | 5   | 6   | -54% | -73%      | 4%  | 88%  | 88%           |  |
| GEE emp | 4.6                 | 2   | 5   | -50% | -62%      | -2% | 88%  | 88%           |  |
| ALR mod | 2.4                 | 2   | 4   | -6%  | -7%       | -2% | 0%   | 63%           |  |
| ALR emp | 2.9                 | 2   | 3   | -6%  | -8%       | -2% | 0%   | 75%           |  |
| MLM mod | 4.3                 | 4   | 6   | -5%  | -9%       | 9%  | 0%   | 88%           |  |
| MLM emp | 1.0                 | 1   | 1   | -4%  | -7%       | 2%  | 0%   | 38%           |  |

#### SE estimate bias summary

† percentage of *N*=8 experimental conditions (defined by  $ρ_y$ ) with ABS(SE %bias) ≥ 10% and ≥ 5%

## Results: I. Cluster RCT: 20/10/5

#### Conditions with $\geq$ 5% ABS SE bias

| $ ho_y$ |   |     |     |     |     |     |     |     |
|---------|---|-----|-----|-----|-----|-----|-----|-----|
|         | 0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 |
| Naïve   |   | Х   | X   | Х   | Х   | Х   | Х   | Х   |
| GEE emp |   | Х   | Х   | Х   | Х   | Х   | Х   | Х   |
| ALR mod |   | Х   |     | X   | Х   | Х   | Х   |     |
| ALR emp |   | Х   |     | X   | Х   | Х   | Х   | Х   |
| MLM mod | Х | Х   |     | Х   | Х   | Х   | Х   | Х   |
| MLM emp |   |     |     | X   | Х   | Х   |     |     |

# Results: I. Cluster RCT: 10/20/5

|         | Rank: | Rank: ABS(SE bias) |     |      | SE bias % |      |      | ABS(SE bias)† |  |
|---------|-------|--------------------|-----|------|-----------|------|------|---------------|--|
|         | mean  | min                | max | mean | min       | max  | ≥10% | ≥5%           |  |
| Naive   | 5.4   | 1                  | 6   | -63% | -81%      | 1%   | 88%  | 88%           |  |
| GEE emp | 4.6   | 2                  | 5   | -59% | -72%      | 1%   | 88%  | 88%           |  |
| ALR mod | 2.3   | 1                  | 5   | -13% | -14%      | -10% | 100% | 100%          |  |
| ALR emp | 3.3   | 2                  | 6   | -13% | -14%      | -11% | 100% | 100%          |  |
| MLM mod | 4.0   | 4                  | 4   | -11% | -16%      | 8%   | 88%  | 100%          |  |
| MLM emp | 1.5   | 1                  | 3   | -11% | -14%      | -1%  | 75%  | 88%           |  |

#### SE estimate bias summary

† percentage of *N*=8 experimental conditions (defined by  $ρ_y$ ) with ABS(SE %bias) ≥ 10% and ≥ 5%

# Summary of Findings: I. Cluster RCT

Within the confines of this simulation and analysis of data from a Cluster Randomized Trial...

% Bias of Standard Error Estimates: Average (min, max): Top 2 performers

|                       | Cluster Structure |                   |  |  |  |  |
|-----------------------|-------------------|-------------------|--|--|--|--|
| rank: model (se type) | <b>20</b> /10/5   | <b>10</b> /20/5   |  |  |  |  |
| #1: MLM (empirical)   | -4% (-7%, +2%)    | -11% (-14%, -1%)  |  |  |  |  |
| #2: ALR (model-based) | -6% (-7%, -2%)    | -13% (-14%, -10%) |  |  |  |  |

With 10 level-3 clusters, performance of standard error estimates left something to be desired.

# Results: II. MultiCenter RCT 20/10/5

|         | Rank: ABS(SE bias) |     |     | S    | SE bias % |     |      | ABS(SE bias)† |  |
|---------|--------------------|-----|-----|------|-----------|-----|------|---------------|--|
|         | mean               | min | max | mean | min       | max | ≥10% | ≥5%           |  |
| Naïve   | 6.0                | 1   | 7   | -15% | -30%      | 0%  | 75%  | 75%           |  |
| GEE mod | 5.8                | 5   | 7   | -6%  | -9%       | -3% | 0%   | 63%           |  |
| GEE emp | 4.6                | 2   | 6   | -5%  | -8%       | -2% | 0%   | 50%           |  |
| ALR mod | 2.4                | 1   | 6   | 0%   | -2%       | 5%  | 0%   | 0%            |  |
| ALR emp | 3.3                | 2   | 4   | -3%  | -6%       | 1%  | 0%   | 25%           |  |
| MLM mod | 2.5                | 1   | 6   | -2%  | -8%       | 3%  | 0%   | 25%           |  |
| MLM emp | 3.5                | 2   | 7   | 0%   | -6%       | 18% | 13%  | 38%           |  |

#### SE estimate bias summary

† percentage of *N*=8 experimental conditions (defined by  $ρ_y$ ) with ABS(SE %bias) ≥ 10% and ≥ 5%

# Results: II. MultiCenter RCT 20/10/5

#### Conditions with $\geq$ 5% ABS SE bias

| $ ho_y$ |   |     |     |     |     |     |     |     |
|---------|---|-----|-----|-----|-----|-----|-----|-----|
|         | 0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 |
| Naïve   |   |     | X   | X   | Х   | Х   | Х   | Х   |
| GEE mod | Х |     | Х   | Х   |     | Х   |     | Х   |
| GEE emp | Х |     | X   | X   |     | Х   |     |     |
| ALR mod |   |     |     |     |     |     |     |     |
| ALR emp |   |     |     |     |     | Х   |     | Х   |
| MLM mod |   |     |     |     |     | Х   |     | Х   |
| MLM emp | Х |     |     |     |     | Х   |     | Х   |

# Results: II. MultiCenter RCT 10/20/5

|         | Rank: ABS(SE bias) |     |     | S    | SE bias % |     |      | ABS(SE bias)† |  |
|---------|--------------------|-----|-----|------|-----------|-----|------|---------------|--|
|         | mean               | min | max | mean | min       | max | ≥10% | ≥5%           |  |
| Naive   | 6.4                | 4   | 7   | -15% | -29%      | 4%  | 75%  | 88%           |  |
| GEE mod | 3.5                | 2   | 4   | -3%  | -6%       | 1%  | 0%   | 25%           |  |
| GEE emp | 2.0                | 1   | 3   | -3%  | -6%       | 1%  | 0%   | 13%           |  |
| ALR mod | 2.0                | 1   | 4   | 0%   | -3%       | 3%  | 0%   | 0%            |  |
| ALR emp | 5.9                | 5   | 7   | -8%  | -10%      | -5% | 13%  | 88%           |  |
| MLM mod | 2.8                | 1   | 6   | -2%  | -6%       | 7%  | 0%   | 25%           |  |
| MLM emp | 5.5                | 5   | 7   | -3%  | -10%      | 30% | 13%  | 88%           |  |

### SE estimate bias summary

† percentage of *N*=8 experimental conditions (defined by  $ρ_y$ ) with ABS(SE %bias) ≥ 10% and ≥ 5%

# Results: II. MultiCenter RCT 10/20/5

#### Conditions with $\geq$ 5% ABS SE bias

|         | $ ho_{y}$ |     |     |     |     |     |     |     |  |  |
|---------|-----------|-----|-----|-----|-----|-----|-----|-----|--|--|
|         | 0         | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 |  |  |
| Naïve   |           | Х   | X   | X   | Х   | Х   | Х   | X   |  |  |
| GEE mod |           | Х   |     |     |     |     |     | X   |  |  |
| GEE emp |           | Х   |     |     |     |     |     |     |  |  |
| ALR mod |           |     |     |     |     |     |     |     |  |  |
| ALR emp |           | Х   | Х   | Х   | Х   | Х   | Х   | Х   |  |  |
| MLM mod | Х         |     |     |     |     |     |     | Х   |  |  |
| MLM emp | Х         | Х   | Х   | Х   | Х   | Х   |     | Х   |  |  |

# Results: II. MultiCenter RCT 4/50/5

### MLM not considered: Ranks from 1 to 5

#### SE estimate bias summary

|         | Rank: ABS(SE bias) |     |     | S    | SE bias % |      |      | ABS(SE bias)† |  |
|---------|--------------------|-----|-----|------|-----------|------|------|---------------|--|
|         | mean               | min | max | mean | min       | max  | ≥10% | ≥5%           |  |
| Naive   | 4.0                | 1   | 5   | -17% | -30%      | -4%  | 63%  | 88%           |  |
| GEE mod | 2.4                | 1   | 3   | -2%  | -5%       | 1%   | 0%   | 25%           |  |
| GEE emp | 2.0                | 1   | 4   | -2%  | -5%       | 2%   | 0%   | 13%           |  |
| ALR mod | 2.0                | 1   | 3   | 0%   | -4%       | 3%   | 0%   | 0%            |  |
| ALR emp | 4.63               | 4   | 5   | -21% | -23%      | -15% | 100% | 100%          |  |

† percentage of *N*=8 experimental conditions (defined by  $ρ_y$ ) with ABS(SE %bias) ≥ 10% and ≥ 5%

# Results: II. MultiCenter RCT 4/50/5

#### Conditions with $\geq$ 5% ABS SE bias

| $ ho_y$ |   |     |     |     |     |     |     |     |
|---------|---|-----|-----|-----|-----|-----|-----|-----|
|         | 0 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 |
| Naïve   |   | Х   | X   | X   | Х   | X   | X   | Х   |
| GEE mod | Х |     |     | Х   |     |     |     | Х   |
| GEE emp | Х |     |     |     |     |     |     |     |
| ALR mod |   |     |     |     |     |     |     |     |
| ALR emp | Х | Х   | Х   | X   | Х   | Х   | Х   | Х   |

# Summary of Findings: II. MultiCenter RCT

Within the confines of this simulation and analysis of data from a MultiCenter RCT...

% Bias of Standard Error Estimates: Average (min, max): Top 3 performers

|                     | Cluster Structure |                 |                |  |  |  |  |
|---------------------|-------------------|-----------------|----------------|--|--|--|--|
| rank: model (se)    | <b>20</b> /10/5   | <b>10</b> /20/5 | <b>4</b> /50/5 |  |  |  |  |
| #1: ALR (model)     | 0% (-2%, +5%)     | 0% (-3%, +3%)   | 0% (-4%, +3%)  |  |  |  |  |
| #2: MLM (model)     | -2% (-8%, +3%)    | -2% (-6%, +7%)  | n/a            |  |  |  |  |
| #3: GEE (empirical) | -5% (-8%, -2%)    | -3% (-6%, +1%)  | -2% (-5%, +2%) |  |  |  |  |

Under the simulated circumstances, ALR produced standard error estimates that were generally unbiased

# Results: III. Observational Study with Stochastic X: 20/10/5

### X1: SE estimate bias summary

|         | Rank: | ABS(SE | E bias) | S    | SE bias % | 6   | ABS(SE bias)† |     |
|---------|-------|--------|---------|------|-----------|-----|---------------|-----|
|         | mean  | min    | max     | mean | min       | max | ≥10%          | ≥5% |
| Naïve   | 5.8   | 1      | 7       | -15% | -41%      | 2%  | 58%           | 74% |
| GEE mod | 3.7   | 1      | 7       | -3%  | -12%      | 7%  | 1%            | 34% |
| ALR mod | 2.3   | 1      | 6       | -1%  | -7%       | 4%  | 0%            | 5%  |
| MLM mod | 2.2   | 1      | 6       | -1%  | -9%       | 3%  | 0%            | 6%  |

#### X2: SE estimate bias summary

| Naïve   | 6.4 | 1 | 7 | -43% | -72% | 4% | 88% | 88% |
|---------|-----|---|---|------|------|----|-----|-----|
| GEE mod | 4.7 | 1 | 7 | -7%  | -16% | 3% | 10% | 76% |
| ALR mod | 1.9 | 1 | 6 | -3%  | -10% | 7% | 0%  | 31% |
| MLM mod | 2.5 | 1 | 7 | -4%  | -11% | 7% | 3%  | 43% |

† percentage of *N*=80 experimental conditions (defined by  $\rho_y$  and  $\rho_x$ ) with ABS(SE %bias)  $\ge$  10% and  $\ge$  5%

### Results: III. Observational Study with Stochastic <u>X1</u>: **20**/10/5: Model-based ABS(SE) ≥5% bias

|           |     |       |       | -070 K       |       |       |       |       |                     |
|-----------|-----|-------|-------|--------------|-------|-------|-------|-------|---------------------|
|           |     |       |       | ρ            | 'y    |       |       |       |                     |
| $ ho_{x}$ | 0   | 0.1   | 0.2   | 0.3          | 0.4   | 0.5   | 0.6   | 0.7   | counts              |
| 0         |     |       | GAM   |              |       |       |       | G     | 2 1 1               |
| 0.1       | G   |       | G     |              |       |       |       |       | 200                 |
| 0.2       | G   |       |       | G            |       |       | G     |       | 400                 |
| 0.3       |     |       |       |              |       | G     |       |       | 100                 |
| 0.4       | G   |       |       |              |       |       |       |       | 100                 |
| 0.5       | G   |       |       | G            | G     |       |       |       | 200                 |
| 0.6       |     | G     | G M   |              | G M   | G     |       |       | 4 0 2               |
| 0.7       |     | G     | G     | G            |       |       | G     |       | 400                 |
| 0.8       |     |       |       | G            | G     |       |       |       | 200                 |
| 0.9       |     | GAM   |       | G            |       | G     | G     | GAM   | 5 <mark>2</mark> 2  |
| counts    | 400 | 3 1 1 | 4 1 2 | 5 <b>0</b> 0 | 3 0 1 | 3 0 0 | 3 0 0 | 2 1 1 | 27 <mark>3</mark> 5 |

Perhaps some improvement w/ GEE as  $\rho_y \rightarrow 1$  and some worsening as  $\rho_x \rightarrow 1$ 

### Results: III. Observational Study with Stochastic X2: 20/10/5: Model-based ABS(SE) ≥5% bias

|        |       |     | 30(02) |       |       |       |       |        |                    |
|--------|-------|-----|--------|-------|-------|-------|-------|--------|--------------------|
|        |       |     | r      | ρ     | у     | F     | r     | F      |                    |
| ρx     | 0     | 0.1 | 0.2    | 0.3   | 0.4   | 0.5   | 0.6   | 0.7    | counts             |
| 0      | G     | G   |        | G     | GM    | G M   |       | G M    | 6 <mark>0</mark> 3 |
| 0.1    | G     |     | G M    | G     | G     | G     | G     | G      | 7 <mark>0</mark> 1 |
| 0.2    |       | G   | G      | G M   | G     |       | GAM   | G      | 6 <b>1</b> 2       |
| 0.3    | G     | G   |        | AM    | G     | G     | G M   | G M    | 6 <b>1</b> 3       |
| 0.4    | Μ     | G A | G      | GAM   |       | G     | G M   | G M    | 6 <mark>2</mark> 4 |
| 0.5    | Α     | G   |        | GAM   | G     | G     | G     | G M    | 6 <mark>2</mark> 2 |
| 0.6    | G A   | GAM |        |       | GAM   | GAM   | G     | G M    | 6 <mark>4</mark> 4 |
| 0.7    | Μ     | G A |        |       | Μ     | GAM   | GAM   | GAM    | 4 4 5              |
| 0.8    | Α     | G   | ΑΜ     | G     | GAM   | G     | G M   | G M    | 6 <mark>3</mark> 4 |
| 0.9    | G A   | ΑΜ  | GAM    | GAM   | GAM   | GAM   | GAM   | GAM    | 787                |
| counts | 5 4 2 | 842 | 4 2 3  | 7 4 5 | 8 3 5 | 9 3 4 | 9 3 6 | 10 2 8 | 60 <b>25 35</b>    |

. GEE and MLM worsened as  $\rho_y \rightarrow 1$ 

. ALR and MLM worsened as  $\rho_x \rightarrow 1$ 

# Results: III. Observational Study with Stochastic X: 10/20/5

### MLM not considered: Ranks from 1 to 5

|         | Rank: | ABS(SE | E bias) | S    | SE bias % | 6   | ABS(SE bias)† |     |  |
|---------|-------|--------|---------|------|-----------|-----|---------------|-----|--|
|         | mean  | min    | max     | mean | min       | max | ≥10%          | ≥5% |  |
| Naïve   | 4.3   | 1      | 5       | -14% | -40%      | 8%  | 55%           | 76% |  |
| GEE mod | 2.2   | 1      | 4       | -2%  | -9%       | 4%  | 0%            | 11% |  |
| ALR mod | 1.5   | 1      | 4       | -1%  | -7%       | 6%  | 0%            | 6%  |  |

#### X2: SE estimate bias summary

| Naïve   | 4.6 | 1 | 5 | -50% | -80% | 1% | 88% | 88% |
|---------|-----|---|---|------|------|----|-----|-----|
| GEE mod | 2.0 | 1 | 3 | -4%  | -10% | 2% | 0%  | 26% |
| ALR mod | 2.3 | 1 | 4 | -5%  | -17% | 3% | 19% | 44% |

+ percentage of *N*=80 experimental conditions (defined by  $\rho_y$  and  $\rho_x$ ) with ABS(SE %bias) ≥ 10% and ≥ 5%

### Results: III. Observational Study with Stochastic X1: 10/20/5: Model-based ABS(SE)≥5% bias

|           |     |     |     | ρ   | у   |     |     |     |        |
|-----------|-----|-----|-----|-----|-----|-----|-----|-----|--------|
| $ ho_{x}$ | 0   | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | counts |
| 0         |     |     |     |     | Α   |     |     |     | 01     |
| 0.1       |     |     |     |     |     |     | Α   |     | 0 1    |
| 0.2       |     |     |     |     |     |     |     |     | 0 0    |
| 0.3       |     |     |     | Α   |     |     |     |     | 0 1    |
| 0.4       |     |     |     |     |     |     |     |     | 0 0    |
| 0.5       |     |     |     |     |     |     |     |     | 0 0    |
| 0.6       |     |     |     |     |     |     |     |     | 0 0    |
| 0.7       |     |     | G A |     | G   | G A |     | G   | 4 2    |
| 0.8       |     |     | G   |     | G   |     | G   |     | 3 0    |
| 0.9       |     |     |     |     |     |     | G   | G   | 2 0    |
| counts    | 0 0 | 0 0 | 2 1 | 0 1 | 2 1 | 1 1 | 2 1 | 20  | 95     |

#### %bias of GEE SE estimates worsened as $\rho_x \rightarrow 1$

### Results: III. Observational Study with Stochastic X2: 10/20/5: Model-based ABS(SE) ≥5% bias

|           |     |     |     | ρ          | y   |     |     |                  |                    |
|-----------|-----|-----|-----|------------|-----|-----|-----|------------------|--------------------|
| $ ho_{x}$ | 0   | 0.1 | 0.2 | 0.3        | 0.4 | 0.5 | 0.6 | 0.7              | counts             |
| 0         | G   |     |     |            |     |     | G   | G                | 3 <mark>0</mark>   |
| 0.1       |     |     |     |            |     |     | G   |                  | 10                 |
| 0.2       |     |     |     |            |     |     | G   |                  | 10                 |
| 0.3       | Α   |     |     |            |     |     |     | G                | 1 1                |
| 0.4       | G A |     |     | Α          |     | G A |     | G                | 3 <mark>3</mark>   |
| 0.5       | Α   | Α   | Α   |            |     |     | G   |                  | 1 3                |
| 0.6       | Α   | Α   |     | G A        |     | G   | Α   |                  | 24                 |
| 0.7       | Α   | A   | G A | Α          | Α   | Α   | Α   | Α                | 18                 |
| 0.8       | Α   | A   | Α   | Α          | Α   | G A | G A | G A              | 38                 |
| 0.9       | Α   | Α   | Α   | G A        | Α   | Α   | Α   | G A              | 28                 |
| counts    | 17  | 05  | 14  | 2 <b>5</b> | 03  | 34  | 64  | 5 <mark>3</mark> | 18 <mark>35</mark> |

%bias of ALR SE estimates improved as  $\rho_y \rightarrow 1$ ; worsened as  $\rho_x \rightarrow 1$ 

# Results: III. Observational Study with Stochastic X: 4/50/5

MLM not considered (Ranks range from 1 to 5)

|         | Rank: | ABS(SE | E bias) | S    | E bias % | 6   | ABS(SE bias)† |     |  |
|---------|-------|--------|---------|------|----------|-----|---------------|-----|--|
|         | mean  | min    | max     | mean | min      | max | ≥10%          | ≥5% |  |
| Naïve   | 3.9   | 1      | 5       | -14% | -39%     | 4%  | 58            | 71  |  |
| GEE mod | 2.0   | 1      | 4       | -1%  | -7%      | 5%  | 0%            | 6%  |  |
| ALR mod | 2.0   | 1      | 4       | -1%  | -6%      | 6%  | 0%            | 8%  |  |

#### X1: SE estimate bias summary

#### X2: SE estimate bias summary

| Naïve   | 4.6 | 1 | 5 | -56% | -86% | 6% | 86% | 89% |
|---------|-----|---|---|------|------|----|-----|-----|
| GEE mod | 1.7 | 1 | 3 | -2%  | -8%  | 3% | 0%  | 9%  |
| ALR mod | 2.8 | 1 | 4 | -11% | -38% | 3% | 44% | 64% |

† percentage of *N*=80 experimental conditions (defined by  $ρ_y$  and  $ρ_x$ ) with ABS(SE %bias) ≥ 10% and ≥ 5%

### Results: III. Observational Study with Stochastic <u>X1</u>: **4**/50/5: Model-based ABS(SE) ≥5% bias

|           |    |     |     | ρ   | У   |                  |     |     |                |
|-----------|----|-----|-----|-----|-----|------------------|-----|-----|----------------|
| $ ho_{x}$ | 0  | 0.1 | 0.2 | 0.3 | 0.4 | 0.5              | 0.6 | 0.7 | counts         |
| 0         |    |     |     |     |     |                  |     |     | 00             |
| 0.1       |    |     |     |     |     |                  |     |     | 00             |
| 0.2       |    |     |     |     |     |                  |     | G   | 10             |
| 0.3       | Α  |     |     |     |     | Α                |     |     | 02             |
| 0.4       | Α  |     | G   |     |     |                  |     |     | 1 1            |
| 0.5       |    |     |     |     |     |                  |     |     | 00             |
| 0.6       |    |     |     |     |     |                  |     |     | 00             |
| 0.7       |    |     |     |     |     | G A              |     |     | 1 1            |
| 0.8       |    |     |     |     |     |                  |     | G A | 1 1            |
| 0.9       | Α  |     |     |     |     | G                |     |     | 1 1            |
| counts    | 03 | 0 0 | 10  | 00  | 00  | 2 <mark>2</mark> | 00  | 2 1 | 5 <del>6</del> |

Both ALR and GEE produced reasonable SE estimates for effects of level-1 X

### Results: III. Observational Study with Stochastic X2: 4/50/5: Model-based ABS(SE) ≥5% bias

|           | ρ <sub>y</sub> |     |     |     |     |     |     |     |                  |
|-----------|----------------|-----|-----|-----|-----|-----|-----|-----|------------------|
| $ ho_{x}$ | 0              | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | counts           |
| 0         |                |     |     |     |     |     |     |     | 00               |
| 0.1       | Α              |     |     |     |     |     |     |     | 0 1              |
| 0.2       | Α              | A   |     |     |     | G A |     |     | 1 3              |
| 0.3       | Α              | Α   | Α   |     |     |     | G A |     | 14               |
| 0.4       | Α              | A   | Α   |     |     |     | Α   | G A | 15               |
| 0.5       | Α              | A   | Α   | Α   | Α   |     | G A |     | 16               |
| 0.6       | G A            | Α   | Α   | Α   | Α   | G A | Α   | Α   | 2 <mark>8</mark> |
| 0.7       | Α              | Α   | Α   | Α   | Α   | Α   | Α   | Α   | 08               |
| 0.8       | Α              | Α   | Α   | Α   | Α   | Α   | Α   | Α   | 08               |
| 0.9       | Α              | Α   | Α   | Α   | G A | Α   | Α   | Α   | 18               |
| counts    | 19             | 0 8 | 0 7 | 05  | 15  | 2 5 | 2 7 | 15  | 7 51             |

%bias of ALR SE estimates improved as  $\rho_y \rightarrow 1$ ; worsened as  $\rho_x \rightarrow 1$ 

# Summary: III. Observational Study with Stochastic X

Within each model type, model-based SEs generally performed the best

level-1 Stochastic X: % Bias of Standard Error Estimates: Average (min, max)

|                  | Cluster Structure |                 |                |  |  |
|------------------|-------------------|-----------------|----------------|--|--|
| rank: model (se) | <b>20</b> /10/5   | <b>10</b> /20/5 | <b>4</b> /50/5 |  |  |
| #1: ALR (model)  | -1% ( -7%, +4%)   | -1% (-7%, +6%)  | -1% (-6%, +6%) |  |  |
| #2: MLM (model)  | -1% ( -9%, +3%)   | n/a             | n/a            |  |  |
| #3: GEE (model)  | -3% (-12%, +7%)   | -2% (-7%, +4%)  | -1% (-7%, +5%) |  |  |

### level-2 Stochastic X: % Bias of Standard Error Estimates: Average (min, max)

|                                | Cluster Structure            |                              |                             |  |  |
|--------------------------------|------------------------------|------------------------------|-----------------------------|--|--|
| rank: model (se)               | <b>20</b> /10/5              | <b>10</b> /20/5              | <b>4</b> /50/5              |  |  |
| # <mark>?</mark> : ALR (model) | <mark>-3% (-10%, +7%)</mark> | -5% (-17%, +3%)              | -11% (-38%, +3%)            |  |  |
| # <mark>?</mark> : MLM (model) | -4% (-11%, +7%)              | n/a                          | n/a                         |  |  |
| # <mark>?</mark> : GEE (model) | -7% (-16%, +3%)              | <mark>-4% (-10%, +2%)</mark> | <mark>-2% (-8%, +3%)</mark> |  |  |

## Summary: III. Observational Study with Stochastic X

### Level-1 Stochastic X

%bias of SE estimates for effect of the level-1 X variable was reasonable ALR tended to perform as well or better than GEE

### Level-2 Stochastic X

%bias of SE estimates for the effect of the level-2 X variable was variable

ALR bested GEE with higher numbers of level-3 clusters The %bias of ALR SEs tended to increase as  $\rho_x \rightarrow 1$ 

GEE bested ALR with lower numbers of level-3 clusters The %bias of GEE SEs tended to increase as  $\rho_y \rightarrow 1$ 

### **Conclusions: Caution**

### Very limited simulations!

- All samples had N=1000
- All samples had n=200 level-2 clusters
- All samples had level-2 clusters of size 5

Computational burden prohibited use of MLM for some cluster structures

## Conclusions: Other (unreported) Findings

#### **Parameter estimates**

appeared reasonable for

- . MLM models and
- . population-average models when  $\rho_y = 0$

#### **Relative statistical power**

Comparable across modeling frameworks, conditional on SE bias

Conclusions: %bias of standard error estimates

### **Cluster RCT**

With 20 level-3 clusters ALR and MLM did a pretty good job With 10 level-3 clusters, not such a good job

#### **MultiCenter RCT**

ALR, MLM, and GEE seemed to perform well, especially ALR

#### **Observational Study with Stochastic X**

ALR, MLM, & GEE did a good job estimating SEs of level-1 effects

For SEs of level-2 stochastic X effects the performance of ALR and GEE modeling frameworks was moderated by the number of level-3 clusters.

## **Conclusions: Due Diligence**

. In some cases, you can fit 3-level MLM with 2 or more quadrature points Give it a try: it should produce better results than Laplace

. Use a naïve cluster bootstrap procedure for estimating SEs? I have not tried this in the context of 3-level data

Consider conducting a simulation study prior to substantive modeling using empirically informed inputs (N, cluster structure, ICC, effect size)

Especially for

- . Cluster RCTs with low-ish number of level-3 clusters and
- . Observational studies with stochastic Xs