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Goals of Today’s Talk

• Introduce considerations for inferential analyses 
prompted by outcome data with a clustered/multilevel 
structure.

• Introduce three commonly used estimation methods 
for conducting multilevel inferential analyses:

• 1) Cluster-adjusted robust standard errors (SE)

• 2) Generalized estimating equations (GEE)

• 3) Multilevel models (MLM) (also known as mixed effects, 
random effects, and hierarchical linear models [HLM])

• Demonstrate the application of these methods to a 
CADC scientist’s health disparities research dataset.

2



Challenges in Health Disparities Research

• Jeffries et al (2019, p. S28) lay out four broad and 
complementary types of methods they recommend for 
health disparities research to optimize research findings’ 
rigor and impact:
1. study design and analytical methods that maximize the ability to 

draw causal inferences from observational data, 

2. modeling techniques that account for the multilevel nature of 
health disparity causes, 

3. complex systems and simulation methods for modeling dynamic 
relations, and

4. qualitative and mixed methods that allow a better understanding 
of relationships that cannot be achieved using quantitative 
methods alone.
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Multilevel Data
• Health disparities research is inherently complex (Jeffries et al. 

2019).

• Multilevel data structures are one way in which the complexity 
of health disparities research is manifested. 

• Multilevel or clustered data refers to data in which observations, 
represented by rows in a dataset, are grouped or organized 
together in a meaningful way that includes correlation across 
observations/rows in the dataset. 

• Examples:

• Education: children within classrooms or schools

• Medicine: patients within providers, hospitals, wards, or clinics

• Public Health: survey respondents with neighborhoods or 
venues
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Descriptive Analysis of Multilevel Data

• Descriptive analyses (e.g., frequencies, means) usually don’t 
require adjustments. Give thought to which units of analysis 
you want to analyze (e.g., clinic level, patient level, or both). 

• One exception: If you are working with data originating from a 
probability or complex sampling approach, you may need to 
account for one or more of the following:
• Weighting

• Primary (e.g., clinics) and secondary (e.g., patients) sampling units

• Stratification

Fortunately, Stata’s -svy- prefix commands typically make this process fairly 
painless. You first use -svyset- to inform Stata of the weight, sampling unit, 
and/or stratification variables and then prefix analysis commands using the 
-svy- prefix. For instance, -tab race- would become -svy: tab race-. 
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Inferential Analysis of Multilevel Data
• Inferential analysis of multilevel data presents challenges 

because most inferential analysis approaches assume rows in 
the dataset originate from independent subjects. 

• Concrete example: standard linear regression models assume 
residuals from observations have a constant variance and are 
uncorrelated. 

• However, observations from multilevel data structures are 
correlated, so their residuals are also often correlated.

• Depending on the research setting, the multilevel structure of 
the data may be quite complex. For example, patients might be 
nested within multiple providers at different hospitals. For 
simplicity, in this presentation, we’ll assume a simple 
hierarchical nesting structure (e.g., a single clinic per patient). 
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General Linear Models (GLM) Review

• To understand why correlation of observations across 
rows of data in a dataset is a problem for traditional 
analysis, methods, let’s take linear regression as an 
example. 

• Linear regression is a specific case of the general linear 
model (GLM). GLMs express an outcome (dependent) 
variable y as a function of Xb + ε, where X is a design 
matrix of fixed effects, b are estimated regression 
coefficients, and ε is a vector of residuals. 

• ε is assumed to be normally distributed with a mean of 
zero and variance σ2.
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GLM  Model Structure

• GLM formulation: 
    y = Xb + ε
where: 

• y is a vector containing the outcome scores

• X is a design matrix containing the design (i.e., predictor or 
independent) variables 

• b is a vector containing the parameter estimates

• ε is a vector containing the residual values

• The values of X are fixed by the design of the study, so we 
refer to the estimates contained in the vector b as the 
estimates of fixed effects. 
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GLM Assumptions
• GLMs typically have three main assumptions: 

• Residuals are normally distributed

• Residuals’ variances are constant across levels of the outcome 
(regression) or groups (ANOVA)

• Residuals are independent of each other

• The independence assumption is problematic for multilevel 
data because measures from participants (e.g., patients) in the 
same cluster (e.g., clinic) are (usually) not independent. 

• If we are willing to assume any dependence among 
observations within clusters is linear, it can be represented 
using either covariances (unstandardized metric) or 
correlations (standardized metric). 
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Structure of ε in a GLM
• If we had five observations within a cluster and fitted a GLM, what would 

the structure of ε residuals be? In matrix form, it would look like this: 

• Main point: The GLM residuals structure is correctly specified for 
independent data but not correctly specified for clustered data!
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Consequences of Correlation
What can go wrong if we analyze correlated clustered data using 
the wrong model (e.g., ANOVA, regression, GLM)?

• If observations within clusters are positively correlated, the 
variances for between-cluster effects in our example will be 
underestimated (Dunlop, 1994). Standard errors will be too small.

• On the other hand, for within-cluster effects, the variances will be 
overestimated (Dunlop, 1994). Standard errors will be too large.

• These inaccurate variance estimates will lead to increased Type I 
(false positive) and Type II (false negative) errors, respectively.

• We might erroneously conclude that a predictor had a significant 
effect when it actually didn’t, or vice versa, leading us to draw 
incorrect substantive conclusions. 
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Addressing Correlated Observations from 
Multilevel Data: Three Approaches

• If standard regression based on the GLM yields 
untrustworthy standard errors and thus tests of 
significance, what methods can we use instead to 
obtain accurate inferences when analyzing 
multilevel data?

• We will describe three popular approaches:

• (1) Cluster-adjusted robust standard errors (SE) and test 
statistics (a.k.a. independent estimating equations 
[IEE])

• (2) Generalized estimating equations (GEE)

• (3) Multilevel models (MLM)
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(1) Cluster-Adjusted Robust SE (IEE)
• In a linear regression model, a general (“sandwich”) formula to determine the 

variance-covariance matrix of the parameter estimates, b, is: 

where Φ = eeT is the variance-covariance matrix of the vector of n residuals 
between the predictions from the regression equation and the observations

• When the residuals meet the constant variance assumption, the variance in 
the residuals at each value of x is estimated by the same value, diag[s2

bibj]. 

• However, when the residuals’ variance is not constant (heteroskedasticity), a 
robust estimator is available where Φ is computed as diag[e2

i], which is a 
diagonal matrix of squared empirical residuals, which is then adjusted for 
degrees of freedom by multiplying it by n/(n-p-1) for p predictors. 

• There is a cluster-adjusted version of this estimator that computes the 
residuals in e2

i based on cluster-level residuals instead of individual-level 
residuals. 
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(1) Cluster-Adjusted Robust SE Properties

• The robust and cluster-adjusted variance estimators are 
statistically consistent, meaning that their estimates approach 
the true population parameters as the sample size increases. 

• Therefore, this estimator works best when the number of 
clusters is large (e.g., 50 or larger). 

• Modified versions have been proposed for smaller numbers of 
clusters. See Hayes & Cai (2007) for details, including formulas. 
Stata has implemented some of these for linear regression 
models (e.g., HC3). 

• When using a robust variance estimator, the parameter 
estimates will be the same as those from an analysis using the 
default model-based estimator. Only the standard errors, Z-
tests, p-values, and confidence intervals will change. 
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(1) Cluster-Adjusted Robust SE
• Analyses using cluster-adjusted robust variance estimators will 

tend to have few convergence challenges and converge quickly, 
making them especially well-suited to analyses involving large 
numbers of clusters and observations where other methods 
will not converge and/or exhibit prohibitively long run times. 

• Robust and cluster-adjusted robust SEs can also be used in 
combination with more sophisticated statistical modeling 
approaches that don’t assume the observations within clusters 
are uncorrelated (e.g., GEE and multilevel models, described 
next). 

• They may work especially well when cluster sizes are 
informative (i.e., when the size of the clusters influences the 
outcome). 
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(2) Generalized Estimating Equations (GEE)

• The cluster-adjusted robust variance estimation approach is 
widely available and computationally fast. However, it ignores 
information in the correlation of residuals that could help to 
minimize the variance of the parameter estimates (i.e., improve 
statistical efficiency).

• Generalized estimating equations (GEE) addresses this limitation 
by using methods similar to ordinary least squares paired with an 
iterative weighting approach to estimate a working correlation 
matrix R among the residuals.

• GEE was originally developed for longitudinal data in which 
multiple repeatedly measured observations are clustered within 
persons. However, it can also be used to analyze multilevel data.

• See Hanley et al. (2003) for a gentle introduction to GEE. 
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(2) More about GEE
• Estimates from GEE are statistically consistent even if R is 

misspecified.

• The closer R is to the true underlying correlation structure among 
observations, the less variance the estimates will have. 

• A typical choice for R in a GEE analysis of multilevel data is 
exchangeable, which assumes each observation is equally 
correlated with every other observation within the same cluster.

• While model-based standard errors are available from GEE, 
research has shown that cluster-adjusted standard errors will 
tend to perform better than model-based standard errors. 

• Robust SE versions that work better in samples with smaller 
numbers of clusters are available to Stata users via the -xtgeebcv- 
community-contributed command. See Gallis et al. (2020). 
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(3) Multilevel Models (MLM)

• The cluster-adjusted robust variance method ignores the 
correlation among observations within the same cluster, except to 
compute empirical standard errors based on cluster-level residuals.

• GEE improves on the cluster-adjusted robust variance approach by 
estimating the working correlation matrix R, though R is still 
treated as a nuisance. 

• What if we wanted our model estimates to explicitly estimate 
cluster-level variability? What if we also wanted our model to 
estimate the fixed effects conditional on cluster-level variability?

• MLMs enable the estimation of cluster-level variability and 
estimate fixed effects in the presence of cluster-level variability. 
For continuous outcomes, we can fit MLMs via linear mixed 
models (LMMs). 
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GLM Recapitulation

• GLM formulation: 
    y = Xb + ε
where: 

• y is a vector containing the outcome scores

• X is a design matrix containing the design (i.e., predictor or 
independent) variables 

• b is a vector containing the parameter estimates

• ε is a vector containing the residual values

• The values of X are fixed by the design of the study, so we 
refer to the estimates contained in the vector b as the 
estimates of fixed effects. 
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Fixed vs. Random Effects
• The predicted value of y = Xb + ε is y = Xb. Therefore, ε = y – Xb. 

• X is the same for every participant and so is b, so the predicted value is 
the same for everyone in each X and b combination. But ε will be 
different for each participant on a participant-to-participant basis. 

• Since the value of ε differs for each person, we can build a distribution 
for it. GLM assumes the distribution of ε is normal with variance σ2. 

• So, now we have two sources of variance in outcome scores:

• Variance due to the fixed effects under our control from Xb

• Variance in the deviations ε = y – Xb due to participant-to-participant
variability, which we assume is random

• Thus, we treat the participant-to-participant variability
as a random effect. This is an important concept for mixed models, 
which are covered next. 
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Linear Mixed Model (LMM) Formulation

• The LMM in matrix notation is:

    y = Xb + Zu + ε
      where: 

• y is a vector containing the outcome scores.

• X is a design matrix containing the dummy or other (e.g., 
effect) coded fixed effect variables. b is a vector containing 
the parameter estimates for the fixed effects. 

• Z is a design matrix containing random effect variables (e.g., 
dummy variables for each cluster). u is a vector containing 
the parameter estimates for the random effects. 

• ε contains the within-cluster residual values.
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LMM Formulation Benefits
• Why is the LMM formulation better than the GLM 

formulation (i.e., structure) for analyses of clustered data?

• Recall earlier we noted that in an analysis with 
independent observations, there are two sources of 
variability in outcome scores: variance explained by fixed 
effects and participant-to-participant variability, which is 
randomly distributed with a mean of zero and variance σe

2.

• In an analysis of clustered data, however, we have three 
sources of variability: variance explained by fixed effects, 
within-cluster variance, and between-cluster variance. 

• The between-cluster variance source is new. 
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Accounting for Between-Cluster Variance
• We could account for between-cluster variance by including a 

dummy variable for each cluster in X along with the dummy 
variables for the other fixed effects of interest. 

• Conceptually, that is what a fixed effects analysis does even 
though we don’t see it because software programs take care of 
creating the dummy variables. 

• A limitation with this approach is that both the cluster dummy 
variables and the dummy variables for the fixed effects of 
interest are stored in the same design matrix X. 

• But they need to be treated differently because the effects of 
interest are fixed effects whereas the cluster dummy variables 
comprise one or more random effects due to the (theoretical) 
sampling of the clusters from a broader population. 
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Modeling Between-Cluster Variance
• LMMs overcome this limitation by placing random effects in Z, not 

X.

   y = Xb + Zu + ε
• Because the between-cluster dummy variables are in the separate 

design matrix Z, the LMM can treat them differently from the fixed 
effects of interest stored in the design matrix X.

• Since we assume clusters are randomly selected from some 
broader population, we will treat their effects similarly to how we 
treated ε in the GLM: we will assume random effects have normal 
distributions with means of zero and a variance σj

2.

• These random effects are modeled as variances and covariances 
stored in a matrix G. Residuals can also be correlated and modeled 
in a residuals correlation matrix R (not covered further).

24



Random Intercepts
• The simplest LMM adds a random intercept to the usual linear 

regression model:

• Standard linear regression: yi = b0 + b1x1 + b2x2 + … + ei

• Mixed-effects: yij = b0 + b1x1 + b2x2 + … + uj + eij 

• In the standard linear regression specification, i indexes 
participants in both the standard and mixed models. In the 
mixed-effects specification, j indexes clusters.

• Estimates of uj typically produced by statistical software 
represent the cluster-specific deviation from the overall 
intercept b0. b0 + uj yields the cluster-specific intercept 
estimates for cluster j. 

• See model 3a in the Stata -mixed- command documentation 
for an example application of this model.
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Intracluster Correlation (ICC)
• For the model shown in the previous slide, the LMM will 

assume uj has a normal distribution with a zero mean and a 
variance σ2

int. 

• σ2
int

 represents the between-cluster variance. 

• It is possible to quantify the proportion of the total variance in 
the outcome attributable to cluster membership as:

 ICC = σ2
int

 / (σ2
int

 + σ2
e) 

where σ2
e is the within-cluster residual variance estimate.

• The ICC can be computed from a model containing only the 
fixed intercept and random intercept (unconditional ICC) or 
from a model containing other fixed effects predictors 
(conditional ICC). 
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LMM Assumptions
• LMMs share the following assumptions with the GLM 

described earlier: 

• Residuals are normally distributed.

• Residuals’ variances are constant across levels of the outcome 
(regression) or groups (ANOVA).

• Additional assumptions specific to the LMM: 

• The correlation structure among the residuals is correctly 
specified within clusters.

• Clusters are statistically independent (e.g., uncorrelated), just as 
individual observations are in the GLM/regression model. 

• The random intercepts uj are uncorrelated with the observation-
level residuals ej.
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LMM Computing
• SAS was one of the first software programs to offer LMMs 

through its MIXED procedure (PROC MIXED) beginning in the 
early 1990s. Today PROC MIXED has many features. 

• Stata and SPSS added LMM functionality to their programs as 
well. R also has LMM commands. 

• LMMs can also be fitted in specialty programs like HLM and 
Mplus.

• Features differ across the programs and new features and 
enhancements are added in new releases. 

• See West & Galecki (2012) and McCoach et al (2018) for article 
reviews of LMM software. West et al. (2015) is a readable 
textbook devoted to illustrating how to fit mixed models in 
multiple software programs using numerous examples.  
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Motivating Example: IDEAS Cohort Analysis

• CADC Scientist Dr. Charles Windon investigated correlates associated with 
amyloid plaque deposits in the brains of older adults.

• For illustrative purposes, we consider a continuous outcome, the centiloid 
score, for 10,361 patients with centiloid values sampled from 500 clinics 
located across the United States.

• Centiloid scores range from 0 (no plaque detected) to 100 (maximum 
possible plaque detected). 

• Patients were nested within clinics. Because patients from the same clinic 
may share similar characteristics and life experiences, centiloid 
observations from different patients from the same clinic may be 
correlated. 

• To account for this possibility, we analyzed 9,470 non-missing observations 
from 490 clinics using the three methods previously described, using Stata. 
These methods are available to varying degrees in other programs (e.g., 
SAS, R, Mplus). 
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IDEAS Analysis: Explanatory Variables
Patient-level explanatory variables: 

• Age (continuous years)

• Gender (female vs. male)

• Race/ethnicity (White as reference; Hispanic, Black 
non-Hispanic, and Asian non-Hispanic)

• Education (some college or more vs. high school or 
less)

• English fluency (fluent vs. not fluent)

• Impairment level (Dementia vs. MCI)

• Living with a child (yes vs. no)
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IDEAS Analysis: No Clustering Adjustment
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IDEAS Analysis: (1) Cluster-Adjusted Robust SE
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IDEAS Analysis: (2) GEE
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IDEAS Analysis: (3a) Multilevel Model

34



IDEAS Analysis: (3a) Multilevel Model 
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IDEAS Analysis: (3b) MLM with Robust SE
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IDEAS Analysis: Results Comparison
• Results from regression analysis that did not adjust for clustering 

should be viewed as suspect.

• Remaining analyses (1-3b) adjusted for clustering in different 
ways:

• 1) Linear regression with cluster-adjusted robust SE approach is 
computationally fast and easy to specify but does not utilize 
correlation information among patients within clinics to inform 
estimates. 

• 2) GEE approach improves on the cluster-adjusted SE method by 
utilizing correlation information among patients within clinics.

• 3a) MLM approach directly models clinic-to-clinic variability while 
relying on a correct specification of the model. 

• 3b) MLM with robust SEs option may help to mitigate some of the 
effects of assumption violations. 
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Conclusion
• Multilevel data are prevalent in health disparities and aging research 

and reflect the complexity of the health disparities research landscape.

• To avoid drawing incorrect conclusions about the statistical significance 
of explanatory variables when analyzing multilevel data, it is important 
to be conversant with analysis methods developed for clustered data 
structures.

• We covered and illustrated three popular methods for analyzing 
clustered data: 1) cluster-adjusted robust standard errors, 2) GEE, and 
3) MLMs. Each has strengths and limitations: MLMs can yield valuable 
information about cluster-level variability but make stronger 
assumptions about the correctness of the underlying model than 
cluster-adjusted standard errors or GEE. 

• In general, any should be superior to ignoring clustering and using 
naïve estimators that assume observations are uncorrelated. 
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