Regression Models for Clustered and Longitudinal Data

Introduction to Mixed Logit Models and GEE Logistic Regression

June 28, 2001

Steve Gregorich
Examples of Multilevel/Clustered/Hierarchical Data Structures

Clustered Data

A three-level data structure
- Schools, classrooms with schools, students within classrooms.
 - "Level-1" ~ students within classrooms.
 - "Level-2" ~ classrooms within schools.
 - "Level-3" ~ schools.

Example two-level data structures.
- sex-partner couples, individuals within couples.
- primary sampling units (e.g., area codes), households within PSUs.
Examples of Multilevel/Clustered/Hierarchical Data Structures

Longitudinal Data

A two-level data structure.
Repeated measures "clustered" or "nested" within individuals.

"Level-1" ~ Repeated measures within individuals.
"Level-2" ~ Individuals.

Combinations of Clustered and Longitudinal Data
Schools, students within schools, repeated measures on students.

"Level-1" ~ repeated measures nested within students.
"Level-2" ~ students within schools.
"Level-3" ~ schools.
Examples of Multilevel/Clustered/Hierarchical Data Structures

Notes

Outcome data is measured at level-1

Covariates can be measured at any level

Interactions possible between covariates measured at different levels

Obs. nested w/in higher-level units, not assumed independent

Repeated measures on the same individual not assumed independent

Highest-level units are assumed to be independent
Contrasting Fixed and Mixed Logistic Regression

Plain logistic regression

Fixed effects only

All observations are independent
A single unit of analysis, e.g., the respondent

Fixed parameters: marginal, population averaged, unit-generic

Cross-sectional OK, but not clustered or longitudinal data
Contrasting Fixed and Mixed Logistic Regression

Plain logistic regression
 Population averaged effects from cross-sectional data
Contrasting Fixed and Mixed Logistic Regression

GEE logistic regression

Fixed effects only

Not all observations are independent
 Data can be represented by 2 nested levels
 Each level represents a unit of analysis
 Clustered sampling OR repeated measures

Fixed effects: marginal, population averaged, unit-generic

Non-independence is considered a nuisance
Contrasting Fixed and Mixed Logistic Regression

GEE logistic regression
Population averaged effects from clustered or longitudinal data
Contrasting Fixed and Mixed Logistic Regression

Mixed logit models:

Fixed and random parameters
 Fixed parameters: marginal, pop averaged, unit-generic
 Random parameters are unit-specific

Not all observations are independent
 Data can be represented by 2 or more nested levels
 Each level represents a unit of analysis
 Clustered sampling AND/OR repeated measures

Non-independence is substantively interesting and is modeled
Contrasting Fixed and Mixed Logistic Regression

Mixed logit models (random intercepts)
Contrasting Fixed and Mixed Logistic Regression

Mixed logit models (random slopes)
Contrasting Fixed and Mixed Logistic Regression

Mixed logit models (random intercepts and slopes)
Unit-Specific versus Population Averaged Effects

Longitudinal Example

Sample a group of unmarried people and follow them over time

Some become married, some never do

You want to know the impact of marital status on HH expenditures

Population-averaged approach

Assess how the average expenditure differed between married and unmarried groups.

No reference to observed individual changes

Unit-specific approach

Assess the change in expenditures at the individual level
Benefits of Modeling Non-Independence

GEE and Mixed Models
Correct standard errors

Simultaneously model effects of different units of analysis
e.g., 'contextual' analysis

Mixed Models
Useful when between-unit variation is substantial and/or of interest

Between-unit variation can be explained by additional covariates

Model more than 2 nested levels
More Formally...

Conditional mean of Y given X_{ij}

$$\mu_{ij} = \frac{1}{1 + \exp\left(-\left(\beta_0 + \beta_1 X_{ij}\right)\right)}$$

and

$$\text{var}(Y_{ij}) = \mu_{ij} (1 - \mu_{ij}),$$

$$\text{logit}(\mu_{ij}) = \ln(\mu_{ij} / (1 - \mu_{ij})).$$

GEE: model the population-average, logit (μ_{ij})

$$\text{logit} (\mu_{ij}) = \beta_0 + \beta_1 X_{ij}$$

$$\text{Corr}(Y_{ij}, Y_{ik}) = \alpha$$

Odds ratios represent the ratios of population odds.
More Formally...

GLMM: model the unit-specific, logit \(\mu_{ij} | U_{0j} \)

\[
\text{logit}(\mu_{ij} | U_j) = B_0 + B_1 X_{ij} + U_{0j}
\]

Cov\((Y_{ij}, Y_{ik}) = \text{var}(U_{0j})\)

Odds ratios represent the ratios of individual odds.

\(Y_{ij}\) are independent, conditional in \(U_{0j}\)
Example 1: Variance Components Model

The Level-1 Model
\[
\logit(\mu_{ij} \mid U_{0j}) = B_{0j} + B_1 X_{ij}
\]

The Level-2 Model:
\[
B_{0j} = B_0 + U_{0j}
\]

The Combined Model:
\[
\logit(\mu_{ij} \mid U_{0j}) = B_0 + B_1 X_{ij} + U_{0j}
\]

\[
\text{Cov}(U_{0j}, e_{ij}) = 0
\]
Example 2: Random Coefficients Model

The Level-1 Model:

\[\text{logit}(\mu_{ij} \mid U_{0j}) = B_{0j} + B_{1j}X_{ij} \]

The Level-2 Model:

\[B_{0j} = B_0 + U_{0j} \]
\[B_{1j} = B_1 + U_{1j} \]

The Combined Model:

\[\text{logit}(\mu_{ij} \mid U_{0j}) = B_0 + B_1X_{ij} + U_{0j} + U_{1j}X_{ij} \]

Further extensions are possible
Estimation Procedures for GLMMs

Approximate quasi-likelihood
- 1st- and 2nd-order MQL and PQL
 - MLwiN, GLMMIX.SAS, HLM

Advantages
- Fast execution.
- Flexible model specification

Disadvantages
- Biased parameter estimates can result when variance components are large.
Estimation Procedures for GLMMs

Gaussian quadrature
- Allows numerical integration for 2-level models
- MIXOR and PROC NLMIXED

Advantages
- Fast execution
- Unbiased parameter estimates, correct standard errors.

Disadvantages
- Limitations on the number of nested levels
- Limitations on the number of random effects
Estimation Procedures for GLMMs

Iterated Bootstrap Bias Correction
Based upon MQL or PQL
MLwiN macros

Advantages
Unbiased parameter estimates
Flexible model specification.

Disadvantages
Computationally intensive
Desired degree of convergence may be difficult to obtain
Estimated standard errors may be questionable
Software can be unstable
Estimation Procedures for GLMMs

MCMC methods—Gibbs sampling

BUGS and MLwiN

Advantages

Unbiased parameter estimates, correct standard errors.

Flexible model specification.

Disadvantages

Judging convergence can be tricky

Computationally intensive.
Ozone Data

71 subjects, each received two doses of ozone exposure

Explanatory variable

Dose = level of ozone exposure (1=High 0=Low)

Outcome

Y = observed respiratory symptoms (1=Yes 0 = No)

Variance component model

\[
\text{logit}(\mu_{ij} \mid U_{0j}) = B_{0j} + B_1 \text{DOSE}_{ij}
\]

\[
B_{0j} = B_0 + U_{0j}
\]

\[
\text{logit}(\mu_{ij} \mid U_{0j}) = B_0 + B_1 \text{DOSE}_{ij} + U_{0j}
\]
Ozone Data

<table>
<thead>
<tr>
<th>id</th>
<th>dose</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>70</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>70</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>71</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>71</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Results from different estimation methods*

<table>
<thead>
<tr>
<th></th>
<th>1st Order MQL</th>
<th>1st Order PQL</th>
<th>2nd Order PQL</th>
<th>NL-MIXED</th>
<th>IBBC</th>
<th>GEE†</th>
</tr>
</thead>
<tbody>
<tr>
<td>B₀</td>
<td>-1.40 (0.32)</td>
<td>-1.53 (0.34)</td>
<td>-2.24 (0.51)</td>
<td>-2.68 (0.79)</td>
<td>-2.61 (0.58)</td>
<td>-1.40 (0.30)</td>
</tr>
<tr>
<td>B₁</td>
<td>0.86 (0.39)</td>
<td>0.94 (0.41)</td>
<td>1.42 (0.52)</td>
<td>1.61 (0.63)</td>
<td>1.56 (0.55)</td>
<td>0.86 (0.29)</td>
</tr>
<tr>
<td>σ²_u</td>
<td>1.14</td>
<td>1.33</td>
<td>5.01</td>
<td>6.85</td>
<td>6.67</td>
<td>n/a</td>
</tr>
</tbody>
</table>

* MCMC did not converge
† Parameters are population averaged, not unit-specific, but compare to MQL.
PROC NLMIXED Syntax for a Mixed Logit Model

proc nlmixed method=gauss;
 eta = beta0 + beta1*dose + u;
 expeta = exp(eta);
 p = expeta/(1+expeta);
 model y ~ binomial(1,p);
 random u ~ normal(0,s2u) subject=id;

notes. Data must be sorted by subject ID. Only two-level models are possible. Multiple random effects are possible. Large models and large N, a problem.
PROC GENMOD Syntax for a GEE Logistic Regression Model

```
proc genmod descending;
   class id;
   model y = dose /dist=bin;
   repeated subject=id / type=un corrw;
```

notes. Only 2-level models are possible. Dependencies treated as nuisances. Large models & large N less of a problem Many different working corr structures CLASS, CONTRAST, ESTIMATE statements Type III statistics available
Software Links

Information
multilevel models project
http://www.ioe.ac.uk/multilevel/

multilevel listserv
http://www.jiscmail.ac.uk/lists/multilevel.html

Harvey Goldstein's papers and free book
http://www.ioe.ac.uk/hgpersonal/papers_for_downloading.htm#SectionA

JJ Hox's free book
http://www.ioe.ac.uk/multilevel/amaboek.pdf
Software Links

Free Software
MIXOR (Gaussian Quadrature)
http://tigger.uic.edu/~hedeker/mix.html

BUGS (MCMC)
http://www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml

MAREG (for Population-Averaged Models)
http://www.stat.uni-muenchen.de/~andreas/mareg/winmareg.html
Software Links

Commercial Software
PROC NLMIXED

GLMM800.SAS macro (1st-order MQL and PQL)
http://ewe3.sas.com/techsup/download/stat/glmm800.sas

MLwiN (MQL, PQL, IBBC, MCMC).
http://multilevel.ioe.ac.uk/index.html

HLM (PQL, and a Gaussian-Quadrature-like approach)
http://www.ssicentral.com/hlm/hlm.htm

GLLAMM6 (ML estimation, requires Stata)
http://www.iop.kcl.ac.uk/iop/departments/biocomp/programs/gllamm.html