Introduction to exploratory common factor analysis (EFA)

Measurement in Clinical Research: Epidemiology 225

Steve Gregorich

October 29, 2009

What are the goals of the common factor model?

Provide data reduction: Represent a set of observed variables (or items) with a more parsimonious set of related constructs (AKA common factors, latent variables)

Test construct validity: Do the items measure what they are hypothesized to measure?

To provide empirical justification for creating summated composite scores, or 'scale scores,' which are more reliable than individual item scores

Overview: Common factor model

What is a common factor model?

Indirect measurement

Some constructs are not directly observable attitudes, intelligence, economic strength, top quark

These are sometimes called latent variables . Latent variables are 'everywhere' (physics, medicine, economics)

It is sometimes possible to assess latent variables indirectly, via multiple, fallible, observed-or manifest-variables

A measurement model relates latent variables to manifest variables.
That is, the latent variables are hypothesized to directly cause responses to corresponding manifest variables

With multiple manifest variables per latent variable, the measurement model can be empirically evaluated, via common factor analysis (define 'common')

Conceptual example

Suppose I want to measure two dimensions of consumer confidence
Expectations for 6-months hence
. Business conditions ($1=$ worse; $\quad 2=$ same; $3=$ better)
. Employment ($1=$ fewer jobs; $2=$ same; $3=$ more jobs $)$
. Income

$$
(1=\text { decrease } ; 2=\text { same; } 3=\text { increase })
$$

Plans to buy within 6-months
. Automobile
. Home
. Major appliances

Conceptual example: Hypothesized measurement model

(define single- and double-headed arrows)

Overview: Made-up example of a factor model

A generic representation of a factor pattern matrix with 2 common factors and 6 manifest variables

	Expectations	Plans to buy
business	.67	.12
employmentincome	.54	.11
auto	.55	.07
house	.05	.77
major appl.	.09	.89
	.10	.57

The factor pattern matrix holds estimated correlations between latent and manifest variables

The latent variables are estimated from the observed data
Correlations between latent and manifest variables aid interpretation
Question: Is the interpretation consistent with the motivating theory?

Wait a minute...

How is it possible to estimate the relationship between something measured (items) and something not measured (factors)?

Start with input data
The input data for a factor analysis are usually the observed correlations or covariances among the observed items

Estimate factor loadings for your hypothesized model (an iterative search)
A well-fitting factor model and estimates can be used to accurately reproduce the input data

Compare the model-reproduced data to the original data Good correspondence between the two suggests that the model has 'good fit' and we have more confidence in the model and estimates

Relationship between standardized factor loadings and item correlations

$\underline{\text { Factor model and loading estimates }}$

Model-implied item correlations

	item 1	item 2	item 3	item 4
item 1	1.0			
item 2	$a \times b$	1.0		
item 3	$a \times c$	$b \times c$	1.0	
item 4	$a \times d$	$b \times d$	$c \times d$	1.0

$.4(a, b, c$, and $d)$ factor loadings attempt to explain 6 inter-item correlations

Relationship between standardized factor loadings and item correlations

Factor model and loading estimates

Model-implied item correlations

	item 1	item 2	item 3	item 4
item 1	1.0			
item 2	.30	1.0		
item 3	.35	.42	1.0	
item 4	.40	.48	.56	1.0

Empirical question
Do the model-implied correlations approximate the observed correlations?

Introduction: Steps in exploratory common factor analysis (EFA)

(1) initial choice of items to factor analyze
(2) respondent sampling and data collection
(3) compute matrix of inter-item correlations
(4) specify number of factors
(5) specify method of factor extraction
(6) specify method of factor rotation
(7) interpret/assess model:
. Is the model substantively appealing?
. Is the specified number of factors reasonable?
. Are any items questionable?
. Possibly re-specify number of factors and/or drop items and re-fit model

Introduction: Step 1. Initial choice of items to factor analyze

Choose
. the constructs (common factors, latent variables) you want to measure . the items (observed or manifest variables) representing each construct

The basic structure of the hypothesized measurement model is represented by the hypothesized correspondence between
(a) items (manifest variables) and
(b) common factors (latent variables)

Should be based upon theory, or previous empirical findings

Introduction: Step 2. Sampling and data collection

Factor analysis requires that responses to a set of 'items' are collected from a sample of (usually) individuals

The sampling method should select individuals who are representative of the targeted population, i.e., generalizability of findings

Introduction: Step 3. Compute matrix of inter-item correlations

The Paul Kline reading misleadingly states that correlations assess the level of agreement between two variables.

There is a distinction between correlation and agreement

Correlation $=1.0$
Agreement $=1.0$

$$
\begin{gathered}
\text { Correlation }=1.0 \\
\text { Agreement }<1.0
\end{gathered}
$$

Introduction: Step 3. Compute matrix of inter-item correlations

Inter-item correlations between 4 made-up items

	x 1	x 2	x3	x4
x 1	1.0	. 56	. 44	. 35
x 2	. 56	1.0	. 60	-. 12
x3	. 44	. 60	1.0	. 32
x4	. 35	-. 12	. 32	1.0

Introduction: Step 4. Specify number of factors

Again, should be based upon theory, experience, previous findings
Exploratory methods to empirically determine the number of factors
. Eigenvalue > 1.0 rule
. Scree plot of eigenvalues

- χ^{2} tests of model fit and fit indices (requires ML factor analysis)
- ML chi-square
- Fit indices: TLI, CFI
- others

So, what is an eigenvalue?
The variance that is explained by an eigenvector
OK, so what is an eigenvector?
The item correlation matrix can be transformed into
 a set of mutually uncorrelated eigenvectors
(i.e., this is a fairly advanced topic in matrix algebra)

Introduction: Step 5. Choose factor extraction method

Principal components versus common factors
Both start with an item correlation or covariance matrix
Principal components
Decomposes total variation in the item correlation matrix (the principal components are the eigenvectors)

Common factor analysis
Decomposes common variation in the item correlation matrix
.What is common variation/communality?
shared variance b / t a manifest variable \& all other manifest variables
Communality estimation
. Squared multiple correlations (SMC)
. Iterated communality estimation
. ML communality estimation

Introduction: Step 6. Specify method of factor rotation

Extracted factors are uncorrelated and are usually difficult to interpret
Factor rotation hopefully allows for easier interpretation
Orthogonal rotation: uncorrelated factors
. VARIMAX (all factor analysis programs)
. many others
Oblique rotation: correlated factors
. PROMAX (SAS)
. Harris-Kaiser (SAS)
. Direct Oblimin (SPSS)
. many others

Example data

NHANES 1982-84 Epi Follow-up
Center for Epidemiologic Studies Depression scale (CES-D)
. White men aged 50+ with complete data on all 20 CES-D items
. $N=2004$

The items of the CES-D are generally believed to represent 4 factors

factor	items
depressive affect	blues, depressed, failure, fearful, lonely, cry, sad
somatic symptoms	bothered, appetite, mind, effort, sleep, talk, get going
inter-personal	unfriendly, dislike
positive affect	good, hopeful, happy, enjoy

Example: Steps 1, 2, and 3.

Initial choice of items to factor analyze
How did Radloff chose items?
. She collected a list of common depressive symptoms
. Is this a good approach?
How you might choose from among the 20 CES-D items
. Previous research findings
. Your own theory

Respondent sampling and data collection (secondary data)

Compute matrix of inter-item correlations

Example: Step 4. specify number of factors

Options
. a priori choice: theory, prior empirical findings
. Eigenvalue > 1.0
. Scree plot
. Model fit tests, indices

Example: Step 4. specify number of factors

a priori choice
. Many investigators, but not all, have reported 4 factors

Example: Step 4. specify number of factors

Choose number of factors to equal number of eigenvalues >1.0

Eigenvalues of the item correlation matrix

	Eigenvalue	Proportion	Cumulative
1	6.06974392	0.3035	0.3035
2	2.36134193	0.1181	0.4216
3	1.17053740	0.0585	0.4801
4	0.91717920	0.0459	0.5259
5	0.81328821	0.0407	0.5666
6	0.78490631	0.0392	0.6058
7	0.73721336	0.0369	0.6427
8	0.72236274	0.0361	0.6788
9	0.70879857	0.0354	0.7143
10	0.67176187	0.0336	0.7479
11	0.65731560	0.0329	0.7807
12	0.61666653	0.0308	0.8116
13	0.57798797	0.0289	0.8405
14	0.55424913	0.0277	0.8682
15	0.52913967	0.0265	0.8946
16	0.50941923	0.0255	0.9201
17	0.48174892	0.0241	0.9442
18	0.40293658	0.0201	0.9643
19	0.37224703	0.0186	0.9829
20	0.34115581	0.0171	1.0000

Example: Step 4. specify number of factors

Scree plot

Scree plot

Example: Step 4. Specify number of factors

Model fit

This is only available with maximum likelihood (ML) factor analysis
There is a chi-square test that the number of factors is sufficient If the test is significant, it suggests that the model fit is poor and that more factors need to be extracted

There are also various fit indices: common are the TLI and CFI
. TLI and CFI values generally range between 0 and 1
. Usually CFI/TLI values > . 95 are thought to suggest approximate fit

\# of factors	χ^{2}	$d f$	p	TLI	CFI
1	8226	170	$<.0001$.74	.77
2	3155	151	$<.0001$.89	.91
3	1941	133	$<.0001$.93	.95
4	1053	116	$<.0001$.96	.97
5	745	100	$<.0001$.96	.98

Example: Step 4. Specify number of factors

Summary
. Radloff and many others suggested 4 factors
. Eigenvalue >1.0 suggested 3 factors
. Scree plot suggested 3 factors
. Model fit suggested at least 3 or 4 factors

We will consider models with 2 through 4 factors

Example: Steps 5 and 6

Specify method of factor extraction
I selected ML factor extraction
It allows for the tests/indices of model fit, described above

Specify method of factor rotation
I selected Harris-Kaiser (oblique) rotation
For comparison, I also present a VARIMAX (orthogonal) rotation

Example: Step 7: assess the model

2 factors

```
(Negative) (Pos Aff)
Factor1 Factor2
```

cesd06	depressed	77	.
cesd18	sad	72	
cesd03	blues	70	\cdot
cesd14	lonely	68	\cdot
cesd07	effort	61	\cdot
cesd10	fearful	60	\cdot
cesd20	get going	59	\cdot
cesd05	mind	59	\cdot
cesd17	cry	56	\cdot
cesd01	bothered	53	\cdot
cesd09	failure	52	\cdot
cesd11	restless	49	\cdot
cesd19	dislike	48	\cdot
cesd02	appetite	48	\cdot
cesd13	talk	47	\cdot
cesd15	unfriendly	42	\cdot
			\cdot
cesd12	happy	.	76
cesd16	enjoy	.	76
cesd08	hopeful	17	60
cesd04	good		55

Example: Step 7: assess the model
Inter-Factor Correlations
Factor1 Factor2
Factor1 100
Factor2 -30 100

Example: Step 7: assess the model

3 factors
(Dep+Som) (InterPers) (Pos Aff)
Factor1 Factor2 Factor3

cesd06	depressed	82	.	
cesd03	blues	75	.	
cesd07	effort	70	-10	
cesd01	bothered	66	-16	
cesd20	get going	61	.	
cesd18	sad	59	17	
cesd05	mind	58	.	
cesd02	appetite	57	-11	
cesd14	lonely	54	18	
cesd11	restless	52	.	
cesd10	fearful	46	19	
cesd17	cry	45	15	
cesd13	talk	38	11	
cesd19	dislike	.	74	
cesd15	unfriendly	.	62	
cesd09	failure	22	40	
cesd12	happy	.	.	76
cesd16	enjoy	.	.	76
cesd08	hopeful	-		60
cesd04	good	24	-	56

Example: Step 7: assess the model
 Inter-Factor Correlations

Factor1 Factor2 Factor3

Factor1 100
Factor2 67
Factor3 -30
100
-21
100

Example: Step 7: assess the model

4 factors

(Somatic)	(InterPers.)	(Pos Aff)	(Dep Aff)
Factor1	Factor2	Factor3	Factor4

cesd07	effort	80	.	.	-11
cesd20	get going	74	-		-14
cesd05	mind	47			11
cesd11	sleep	44			.
cesd02	appetite	42	.		14
cesd01	bothered	35	-14		31
cesd13	talk	35	15		
cesd19	dislike	.	69	.	
cesd15	unfriendly		61		
cesd0 9	failure	16	39	.	10
cesd16	enjoy	-	.	76	
cesd12	happy	.	-	76	
cesd08	hopeful	.	-	60	
cesd04	good	11	-	55	13
cesd18	sad	-15	.	.	86
cesd17	cry	-27	.		84
cesd06	depressed	22	.		65
cesd03	blues	17	.		63
cesd14	lonely		11		60
cesd10	fearful	13	15		37

Example: Step 7: assess the model

Inter-Factor Correlations

Factor1 Factor2 Factor3 Factor4

Factor1	100			
Factor2	54	100	100	
Factor3	-24	-18	-30	100

Example: Effects of other options

Unrotated factors: 4-factor model

Factor1

cesd06	depressed	77		-13	-11
cesd18	sad	73			-24
cesd03	blues	70		-11	-12
cesd14	lonely	67			-11
cesd07	effort	59	13	-23	26
cesd10	fearful	59			.
cesd20	get going	58	12	-15	27
cesd05	mind	56	12	.	13
cesd17	cry	56	.		-28
cesd01	bothered	53		-19	-
cesd09	failure	53		22	11
cesd19	dislike	49		47	13
cesd11	sleep	49	.	-11	12
cesd02	appetite	46		-16	
cesd13	talk	44	10		13
cesd15	unfriendly	41		39	16
cesd16	enjoy	-32	69		
cesd12	happy	-36	69		
cesd08	hopeful	-19	55		
cesd04	good	.	52		

Example: Effects of other options: VARIMAX (orthogonal rotation)

Factor1

cesd07	effort	67	12	.	14
cesd20	get going	63	10	.	20
cesd06	depressed	57	52	-10	16
cesd05	mind	52	21	.	21
cesd03	blues	50	49	-	15
cesd01	bothered	48	29	-	
cesd11	sleep	46	17	.	14
cesd02	appetite	45	19	-	.
cesd10	fearful	38	35	.	29
cesd13	talk	38	15	.	23
cesd18	sad	37	61	.	28
cesd17	cry	23	55	.	21
cesd14	lonely	40	48	.	29
cesd12	happy	-14	-13	75	
cesd16	enjoy	-12	.	75	
cesd08	hopeful	.	.	58	.
cesd04	good	-	-	52	
cesd19	dislike	17	19	.	65
cesd15	unfriendly	18	12	.	56
cesd09	failure	31	22		43

Conclusions

Choice of number of factors should be based upon
Theoretical appeal, parsimony, clinical experience as much as empirical model fit

Exploratory factor analysis can be confusing/trying/squishy
Sometimes the initial selection of items requires modification (e.g., elimination of poor items).

This means that selection of both
(1) the items to be modeled and
(2) the number of factors can be 'in play' at the same time

Confirmatory factor models also exist
. Specify both the number of factors and the item-to-factor configuration
. Also allows tests of whether factor model is invariant across groups

Conclusions

To assess the properties of multi-item measurement instruments
Always use factor analysis, not principal components analysis
Always use oblique rotation
Use ML factor analysis.
This allows a test of whether the specified number of factors is sufficient.
Be thoughtful about the measurement model
. Item creation and selection should be a deliberate process
. In many ways, Radloff got 'lucky'
Start with 'small' models

Conclusions

Creation of a measurement instrument with good psychometric properties represents programmatic work-not project work.
. Iterative modification with new samples
. Replication
. Testing in new population groups

Example: SAS PROC FACTOR code

The following SAS code will estimate the eigenvalues and create a scree plot

```
proc factor method=prin priors=one scree;
    var cesd01-cesd20;
run;
```

The following SAS code will fit a common factor model
(1) $\mathrm{n}=4$: extraction of 4 factors
(2) method=ml: maximum likelihood factor extraction
(3) priors=smc: SMCs as initial communality estimates
(4) rotate=hk: Harris-Kaiser oblique factor rotation
(5) other options to enhance output (re, fuzz, round, flag)

```
proc factor n=4 method=ml priors=smc rotate=hk
    re fuzz=.1 round flag=99;
    var cesd01-cesd20;
run;
```

